

Forecasting the Reliability of Software via Neural
Networks

Yogita Kansal1, Shailee Choudhary 2
1Department of Computer Science, 2Department of Information Technology

Manav Rachna College of Engineering, Faridabad, India (Delhi)

Abstract—Today’s era highly depends on the applications
built via software and if the quality of software lacks it results
in incalculable problems. Hence, the software reliability which
is a part of software quality becomes essential to manage. For
judging the reliability of software many software reliability
models are came into practise. Software reliability engineering
declares that any of the model usage is not accurate for
prediction in all cases. Furthermore, the neural networks are
known for their good prediction. For this reason, the proposed
work merges the software reliability model and the neural
network model. The work concludes three models comprising
the capability to judge the accuracy of the number of failures
prediction.
Keywords—Software reliability model, Logistic growth curve
model, Goel-Okumuto NHPP model, Yamada S-shaped
model, Neural network, Execution time, Cumulative failures,
Training, Prediction.

I. INTRODUCTION

In terms of software, the reliability refers to the probability
of producing error free output for a specified period of time
under a certain environment. Software Reliability model
provides us a means to measure the reliability of software.
The models applicable to the assessment of software
reliability are called SRGM. As the reliability of any
software is directly proportional to the number of failures
i.e. if a user is rarely observing the number of failures then
we can say the software is more reliable. Failure is an event
which protects the program from running successfully due
to some uncertain problems in the syntax of the code or in
the environment provided to the software. In software
reliability engineering there are thousands of models for
depicting the software reliability but still none of the model
is eligible to work with every circumstances. Each model
has its own assumptions and its own value on which it can
be operated. Some examples of such models are Jelinski-
Moranda model, Logistic Growth curve model, Goel-
Okumuto NHPP model, Yamada S-shaped model and much
more. But in this research work we are focusing on just
Logistic Growth curve model, Goel- Okumuto NHPP
model and Yamada S-shaped model. The paper also
focuses on the mapping of above mentioned models with
neural networks. However, the main target of the work is to
provide the faithful representation of the reliability
prediction.

II. SOFTWARE RELIABILITY MODEL

Software reliability model is directly proportional to the
number of cumulative failures and the execution time.

Cumulative failures are the total number of failures found
while executing the program in specified period of time.
Proliferations of software reliability models have emerged
as people try to understand the characteristics of how and
why software fails and try to quantify software reliability
[1]. Reliability models or analytical models can broadly be
classified into two categories: static models and dynamic
models.

Static Model: A static model uses some attributes of the
project or program modules to estimate the number of
defects in the software. A static model of software quality
estimation has the following general form:

y=f(x1,x2,………,xk)+e
where the dependent variable y is the defect rate or the
number of defects, and the independent variable xi are the
attributes of the product, the project, or the process through
which the product is developed.. The error term is e. some
examples are Halstead’s software metric, Mc Cabe’s
cyclomatic complexity metric [2].
 Dynamic Model: Based on statistical distributions, the
current development defect patterns are used to estimate
end product reliability. It tracks the failure data produced
by software system to develop a reliable operational profile
of the system over a specified time. Some examples of this
model are Error seeding model, Time domain Model, Input
Domain model, Fault count model [2].

A software reliability model is known as one of the
fundamental technologies for quantitative software
reliability assessment, and playing an important role in
software project management for producing a highly-
reliable software system [3]. SRGM is a mathematical
model, which describes the reliability of the software as the
defects are identified and repaired. For knowing the best
model above the variety of models we need to define some
parameters through which the optimal one is carried out.
The parameters by which the prediction values have been
evaluated are average error, relative error, normalised
average error etc. The models that are needed to be
compared are:

A. Logistic-Growth Curve Model

In general, as the software defects detected and removed
with time, the reliability of the software is increasing i.e.
the software reliability growths with the fixed defects.
Therefore, under some conditions, the models developed to

Yogita Kansal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2658-2661

www.ijcsit.com 2658

predict economic population growth could also be applied
to predict software reliability growth. These models simply
fit the cumulative number of detected faults at a given time
with a function of known form. Logistic growth curve
model is one of them and it has an S-shaped curve. Its
mean value function and intensity function are [3].

m(t)= a a a>0,b>0, k>0 (1)

 1 + k*exp [-bt]

λ(t)= ab exp [-bt]] a>0, b>0, k>0 (2)

 (1 + k*exp [-bt])2
where a is the expected total number of faults to be

eventually detected and k and b are parameters which can
be estimated by fitting the failure data.

B. Goel-Okumuto model

The Goel Okumuto model was first proposed by Goel
and Okumuto that lies in the category of Non homogeneous
poisson process model i.e. NHPP which signifies that the
mean value function is non linear. Hence, this model is also
known as exponential NHPP model. From the broader
perspective the goel-okumuto model is the failure count
model by which the software reliability is calculated
through calculating the number of faults in the specific time
interval. The model further comprises of some assumptions
like the cumulative number of failures by time t follows a
poisson process and must be independent; defects must be
repaired immediately after the discovery and the repair
must be perfect. Its mean vale function and intensity
function are [3].

M (t) =a(1-exp[-bt]) a>0, b>0 (3)
λ (t)=ab*exp(-bt) a>0,b>0 (4)

where a is the expected total number of faults to be
eventually detected and b represents the fault detection rate.
In fact, it follows that [4] .

lim m(t) =a
t ∞

C. Yamada S-shaped Model

 The S-shaped reliability growth model was proposed by
Ohba and is the illustrative of the gamma distribution class.
Here the per fault distribution is gamma. The software error
detection process can be described as an S-shaped growth
curve to reflect the initial learning curve at the beginning,
as team members become familiar with the software,
followed by growth and then leveling off as the residual
faults become more difficult to uncover. Its mean value
function and intensity function are:

m (t)= a * (1-exp[-bt]) a a>0,b>0, k>0 (5)
 1 + k*exp [-bt]

 λ(t)= ab exp [-bt] (1+kt)] a>0, b>0, k>0 (6)
 (1 + k*exp [-bt])2

III. OVERVIEW OF NEURAL NETWORK

Artificial neural networks are a computational metaphor
inspired by studies of the brain and nervous systems in
biological organisms [5]. Neural networks are likened to

non parametric models in the statistical literature. It
communicates through the connections between processing
elements called neurons, fig 1 shows a neuron. Knowledge
is encoded into the network through the strength of the
connections between different neurons, called weights, w
which can be modified so as to model synaptic learning.
The unit computes some function f of the weighted sum of
its inputs.

 While designing the neural network the individual
element inputs are x1,x2 ,…….. , xR are multiplied by the
weights w1,1 , w1,2,……. , w1,R and the weighted values are
fed to the summing junction. Their sum is simply Wx, the
dot product of the single row matrix W and the vector x. R
is the number of elements in the input vector.

Figure1: A simple neuron

 a= f (∑ w1,R xR + b) (7)

 The weighted sum is ∑ w1,R xR called the net input
to unit 1, often written net1.

 Note that w1,R refers to the weight from unit R to unit
1 (not the other way around).

 The function f is the unit's activation function. In
the simplest case, f is the sigmoid function, and the
unit's output is
 F (n) =1/ (1+e-n) (8)

 Neural networks learn by example. The learning rule is
provided with a set of examples (the training set) of proper
network behavior {x1,t1},{ x2,t2}, ……. , {xQ,tQ} where xq

 is an input to the network, and tq

is the corresponding

correct (target) output. As the inputs are applied to the
network, the network outputs are compared to the targets.
The learning rule is then used to adjust the weights and
biases of the network in order to move the network outputs
closer to the targets. The Perceptron learning rule falls in
this supervised learning category. There is also the
Supervised Hebbian learning.

IV. MAPPING NEURAL NETWORK WITH SOFTWARE

RELIABILITY MODELS

As mention in section 2 we have multiple software
reliability models, among these models we have selected
three models i.e. logistic growth curve model, Yamada s-
shaped model and Goel okumuto model. Instead of taking a
single model we have taken multiple so that we can show
the comparison of these models and carried out the best
one. The mean value function for these models is as shown
in equation (1), (3), (5).

Yogita Kansal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2658-2661

www.ijcsit.com 2659

A. Designing Activation function for the proposed
reliability model

 How the software reliability models are merged with
neural network has been shown now on wards. As for
prediction through neural network, one needs to train the
network through input and target pairs. And also for
training, the activation function has an important role. That
is why here we have decided to map reliability model with
neural network by designing the new activation function
such that the mean value function of the reliability model is
treated as the transfer function or the activation function.
The new activation function for each of the model is as
depicted in equation (9), (10), (11)

 F(n)= 1 a logistic growth curve (9)

 1 + exp[-w1,R t1,R]
F(n)= (1-exp[-w1,R t1,R]) Goel-okumuto NHPP

 model (10)
F(n)=(1-((1+ w1,R t1,R)*exp[-w1,R t1,R])) Yamada S-

 shaped model (11)

 W1
11 h (t) W0 11

 x(t) y(t)

Figure 2: Feed forward neural network

Where x(t) is the input i.e. the time at which a fault is
detected in the software, w(t) are the weights that is being
randomly selected within the range of -0.5 and 0.5, h(t) is
the output of the hidden unit which is gained after applying
the activation function as mentioned in equation (9), (10),
(11) and y(t) is the desired output i.e. the predicted faults.

B. Working of Proposed model

 As discussed in previous section, a neural network
relies on the output calculated through the activation
function. If we combine the software reliability models like
GO model, the Delay S-shaped and the logistic growth
curve model with neural network, then we need to use 1-e-x,
1- (1+x) e-x and 1/1+ e-x as the activation functions in the
hidden layer.
 We can map software reliability prediction problem in
terms of a neural network through:
 P:{(Ik (t), Ok (t)) , ik+h (t + ∆)} ok+h (t+∆) (12)
 where, (Ik (t), Ok (t)) represents the failure history of the
software system at time t used for training the network and
ok+h (t+∆) is the network’s prediction. Firstly, our task is to
successfully train the network. After that the network is
thoroughly used to predict the total number of faults to be
detected at the end of future session k + h by feeding ik+h (t
+ ∆) as its input.

C. Prophecy Approach

We have chosen the testing and debugging data from an
actual project described by Yoshira Tohma say Data Set
1(taken from [6] Table 4) for generating an accurate
prediction. In the data set, execution time was reported in
terms of days and faults in terms of cumulative faults at the
end of each day. The total testing and debugging time was
46 days and there were 266 faults.

The process of training a neural network involves tuning
the values of the weights and biases of the network to
optimize network performance as defined by the network
performance function.
 Initially, we have trained our network with 100 epochs
and 5 hidden neurons by updating the weights at each time
we have encountered the wrong output. The calculated
gradient error has been plotted as shown in fig 3, fig 4, fig
5.

Figure 3: Plot of errors w.r.t epochs of logistic growth curve model

Figure 4: Plot of errors w.r.t epochs of GO NHPP model

Figure 5: Plot of errors w.r.t epochs of Yamada S-shaped model

Yogita Kansal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2658-2661

www.ijcsit.com 2660

D. Comparison Criteria

In order to compare the predictive accuracy of different
models, we have used some quantitative measures. The
software reliability research community uses a variety of
metrics for comparison of models. Let the data be grouped
into n points (ti ,fi), i=1 to n, where fi is the cumulative
number of faults found at time ti and ti is the accumulated
execution time in disclosing fi faults. Feed the pairs of { ti ,fi
} to train the network by the back-propagation algorithm. ti

(where i>n) acts as a input to the network. Let µi be the
projected number of faults at time ti which will be the
output of the network after the successful training. A two
component predictability measure consisting of average
error (AE) and average bias (AB) was used by Malaiya et
al. to compare predictive accuracy of the models.

 The comparison criteria we engage to compare various
model’s performance are described as follows [7].

1. The Relative Error (RE) [7]

RE= µi- fi (13)
 fi

where fi is the actual faults and µi is the predicted faults
at the end of testing.

2. The Average Error (AE)
3.

 n-1
AE= 1 ∑ |RE| (14)

 n-1 i=1

the AE measures how well a model predicts
throughout the test phase. The average error is
calculated for overall testing and debugging session.

4. The Average Bias (AB)
n-1

AB= 1 ∑ RE (15)
 n-1 i=1

All the parameters mentioned above can be used to
compare the predictive accuracy of models within a single
data set only.

V. PREDICTION RESULTS

 At this point, we have trained our network through
different activation functions. Moreover, fig 3, fig 4 and fig
5 depict the flow of gradient error with the three models.
After training the networks, the next step is to find the
simulated results of the inputs by which we can calculate
our first comparison parameter i.e. relative error. The figure
6 represents the relative error with respect to the execution
time for the three models respectively.

Figure 6: Plot of relative errors w.r.t time of the three models

Further, the average error and average bias of the models

are as shown in Table 1:

Table 1: Shows the values for three models
Model Average Error Average Bias

Logistic Growth
Curve Model

0.3190 0.2672

Goel-Okumuto
NHPP model

1.5470 1.5444

Yamada S-shaped
model

13.5657 13.2864

VI. CONCLUSION

While dealing with logistic growth curve model, Goel-
okumuto NHPP model and Yamada s-shaped model, we
have seen that there is only minor variance among these
models. As the lower values of average error and average
bias can result in more reliable software. We conclude that
Logistic growth curve model is the best approach that one
can use for the software reliability prediction. Further we
can say, logistic growth curve> Goel-okumuto NHPP
model> Yamada s-shaped model.

REFERENCES

[1] Pan Jiantao, Spring 1999, “Software Reliability”, Carnegie Mellon
University

[2] Mariam Rahmani, Azad Azadmanesh, 2011, “Exploitation of
Quantative Approaches to Software Reliability”, Technical Report,
University of Nebraska at Omaha.

[3] Gargoor AI. G Rita, Saleem N Nada, July 2013, “Software
Reliability Prediction using Artificial Techniques”, Mosul
University, Iraq

[4] Aggarwal Gaurav, Gupta V.K, Jan 2014, “Software Reliability
Growth Model”, University of Rajasthan.

[5] R. Lippmann, , Apr. 1987, “An Introduction to Computing with
Neural Nets,” IEEE Acoustics, Speech and Signal Processing, pp-4-
22.

[6] Y. Tohma et al, 1990, “Parameter Estimation of the Hyper-
Geometric Distribution Model for Real Test/Debug Data,” ,Tokyo
Institute of Technology.

[7] Lyu, M.R; 1996, “Handbook of Software Reliability Engineering”,
McGraw-Hill.

Yogita Kansal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2658-2661

www.ijcsit.com 2661

