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Abstract—Today’s era highly depends on the applications 
built via software and if the quality of software lacks it results 
in incalculable problems. Hence, the software reliability which 
is a part of software quality becomes essential to manage. For 
judging the reliability of software many software reliability 
models are came into practise. Software reliability engineering 
declares that any of the model usage is not accurate for 
prediction in all cases. Furthermore, the neural networks are 
known for their good prediction. For this reason, the proposed 
work merges the software reliability model and the neural 
network model. The work concludes three models comprising 
the capability to judge the accuracy of the number of failures 
prediction.   
Keywords—Software reliability model, Logistic growth curve 
model, Goel-Okumuto NHPP model, Yamada S-shaped 
model, Neural network, Execution time, Cumulative failures, 
Training, Prediction. 

I. INTRODUCTION 

In terms of software, the reliability refers to the probability 
of producing error free output for a specified period of time 
under a certain environment. Software Reliability model 
provides us a means to measure the reliability of software. 
The models applicable to the assessment of software 
reliability are called SRGM. As the reliability of any 
software is directly proportional to the number of failures 
i.e. if a user is rarely observing the number of failures then 
we can say the software is more reliable. Failure is an event 
which protects the program from running successfully due 
to some uncertain problems in the syntax of the code or in 
the environment provided to the software. In software 
reliability engineering there are thousands of models for 
depicting the software reliability but still none of the model 
is eligible to work with every circumstances. Each model 
has its own assumptions and its own value on which it can 
be operated. Some examples of such models are Jelinski-
Moranda model, Logistic Growth curve model, Goel- 
Okumuto NHPP model, Yamada S-shaped model and much 
more. But in this research work we are focusing on just 
Logistic Growth curve model, Goel- Okumuto NHPP 
model and Yamada S-shaped model. The paper also 
focuses on the mapping of above mentioned models with 
neural networks. However, the main target of the work is to 
provide the faithful representation of the reliability 
prediction. 

II. SOFTWARE RELIABILITY MODEL 

Software reliability model is directly proportional to the 
number of cumulative failures and the execution time. 

Cumulative failures are the total number of failures found 
while executing the program in specified period of time. 
Proliferations of software reliability models have emerged 
as people try to understand the characteristics of how and 
why software fails and try to quantify software reliability 
[1]. Reliability models or analytical models can broadly be 
classified into two categories: static models and dynamic 
models.  

Static Model: A static model uses some attributes of the 
project or program modules to estimate the number of 
defects in the software. A static model of software quality 
estimation has the following general form: 

y=f(x1,x2,………,xk)+e  
where the dependent variable y is the defect rate or the 
number of defects, and the independent variable xi are the 
attributes of the product, the project, or the process through 
which the product is developed.. The error term is e. some 
examples are Halstead’s software metric, Mc Cabe’s 
cyclomatic complexity metric [2]. 
      Dynamic Model: Based on statistical distributions, the 
current development defect patterns are used to estimate 
end product reliability. It tracks the failure data produced 
by software system to develop a reliable operational profile 
of the system over a specified time. Some examples of this 
model are Error seeding model, Time domain Model, Input 
Domain model, Fault count model [2]. 

A software reliability model is known as one of the 
fundamental technologies for quantitative software 
reliability assessment, and playing an important role in 
software project management for producing a highly-
reliable software system [3]. SRGM is a mathematical 
model, which describes the reliability of the software as the 
defects are identified and repaired. For knowing the best 
model above the variety of models we need to define some 
parameters through which the optimal one is carried out. 
The parameters by which the prediction values have been 
evaluated are average error, relative error, normalised 
average error etc.  The models that are needed to be 
compared are: 

A. Logistic-Growth Curve Model 

In general, as the software defects detected and removed 
with time, the reliability of the software is increasing i.e. 
the software reliability growths with the fixed defects. 
Therefore, under some conditions, the models developed to 
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predict economic population growth could also be applied 
to predict software reliability growth. These models simply 
fit the cumulative number of detected faults at a given time 
with a function of known form. Logistic growth curve 
model is one of them and it has an S-shaped curve. Its 
mean value function and intensity function are [3].  

 
m(t)=          a            a                  a>0,b>0, k>0    (1) 

      1 + k*exp [-bt] 
 
λ(t)=    ab exp [-bt]      ]     a>0, b>0, k>0   (2) 

              (1 + k*exp [-bt] )2            
where a is the expected total number of faults to be 

eventually detected and k and b are parameters which can 
be estimated by fitting the failure data.  

B. Goel-Okumuto model 

The Goel Okumuto model was first proposed by Goel 
and Okumuto that lies in the category of Non homogeneous 
poisson process model i.e. NHPP which signifies that the 
mean value function is non linear. Hence, this model is also 
known as exponential NHPP model. From the broader 
perspective the goel-okumuto model is the failure count 
model by which the software reliability is calculated 
through calculating the number of faults in the specific time 
interval. The model further comprises of some assumptions 
like the cumulative number of failures by time t follows a 
poisson process and must be independent; defects must be 
repaired immediately after the discovery and the repair 
must be perfect.  Its mean vale function and intensity 
function are [3].  

M (t) =a(1-exp[-bt]) a>0, b>0   (3) 
λ (t)=ab*exp(-bt) a>0,b>0   (4) 

where a is the expected total number of faults to be 
eventually detected and b represents the fault detection rate. 
In fact, it follows that [4] . 

lim m(t) =a 
t  ∞ 

C. Yamada S-shaped Model 

     The S-shaped reliability growth model was proposed by 
Ohba and is the illustrative of the gamma distribution class. 
Here the per fault distribution is gamma. The software error 
detection process can be described as an S-shaped growth 
curve to reflect the initial learning curve at the beginning, 
as team members become familiar with the software, 
followed by growth and then leveling off as the residual 
faults become more difficult to uncover. Its mean value 
function and intensity function are: 

m (t)=  a * (1-exp[-bt])     a                  a>0,b>0, k>0  (5) 
    1 + k*exp [-bt] 
 
    
  λ(t)=    ab exp [-bt] (1+kt)     ]        a>0, b>0, k>0  (6) 
                  (1 + k*exp [-bt] )2            

III. OVERVIEW OF NEURAL NETWORK 

Artificial neural networks are a computational metaphor 
inspired by studies of the brain and nervous systems in 
biological organisms [5]. Neural networks are likened to 

non parametric models in the statistical literature. It 
communicates through the connections between processing 
elements called neurons, fig 1 shows a neuron. Knowledge 
is encoded into the network through the strength of the 
connections between different neurons, called weights, w 
which can be modified so as to model synaptic learning. 
The unit computes some function f of the weighted sum of 
its inputs. 

 While designing the neural network the individual 
element inputs are x1,x2 ,…….. , xR are multiplied by the 
weights w1,1 , w1,2,……. , w1,R and the weighted values are 
fed to the summing junction. Their sum is simply Wx, the 
dot product of the single row matrix W and the vector x. R 
is the number of elements in the input vector. 

 

 
Figure1: A simple neuron 

 

 a= f (∑ w1,R xR + b)  (7) 
 

 The weighted sum is ∑ w1,R xR called the net input 
to unit 1, often written net1.  

 Note that w1,R refers to the weight from unit R to unit 
1 (not the other way around).  

 The function f is the unit's activation function. In 
the simplest case, f is the sigmoid function, and the 
unit's output is  
 F (n) =1/ (1+e-n)                       (8) 

    Neural networks learn by example. The learning rule is 
provided with a set of examples (the training set) of proper 
network behavior {x1,t1},{ x2,t2}, ……. , {xQ,tQ} where xq

 is an input to the network, and tq
 
is the corresponding 

correct (target) output. As the inputs are applied to the 
network, the network outputs are compared to the targets. 
The learning rule is then used to adjust the weights and 
biases of the network in order to move the network outputs 
closer to the targets. The Perceptron learning rule falls in 
this supervised learning category. There is also the 
Supervised Hebbian learning. 

IV. MAPPING NEURAL NETWORK WITH SOFTWARE 

RELIABILITY MODELS 

As mention in section 2 we have multiple software 
reliability models, among these models we have selected 
three models i.e. logistic growth curve model, Yamada s-
shaped model and Goel okumuto model. Instead of taking a 
single model we have taken multiple so that we can show 
the comparison of these models and carried out the best 
one.  The mean value function for these models is as shown 
in equation (1), (3), (5).   
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A. Designing Activation function for the proposed 
reliability model 

     How the software reliability models are merged with 
neural network has been shown now on wards. As for 
prediction through neural network, one needs to train the 
network through input and target pairs. And also for 
training, the activation function has an important role. That 
is why here we have decided to map reliability model with 
neural network by designing the new activation function 
such that the mean value function of the reliability model is 
treated as the transfer function or the activation function. 
The new activation function for each of the model is as 
depicted in equation (9), (10), (11) 
 
     F(n)=       1           a                   logistic growth curve (9) 

           1 + exp[-w1,R t1,R ] 
F(n)= (1-exp[-w1,R t1,R])            Goel-okumuto NHPP 

     model (10) 
F(n)=(1-((1+ w1,R t1,R)*exp[-w1,R t1,R])) Yamada S- 

    shaped model (11)  
 

                      W1 
11      h (t)      W0 11 

  x(t)                                                              y(t) 

Figure 2: Feed forward neural network 

Where x(t) is the input i.e. the time at which a fault is 
detected in the software, w(t) are the weights that is being 
randomly selected within the range of -0.5 and 0.5, h(t) is 
the output of the hidden unit which is gained after applying 
the activation function as mentioned in equation (9), (10), 
(11) and y(t) is the desired output i.e. the predicted faults.  

B. Working of Proposed model 

      As discussed in previous section, a neural network 
relies on the output calculated through the activation 
function. If we combine the software reliability models like 
GO model, the Delay S-shaped and the logistic growth 
curve model with neural network, then we need to use 1-e-x, 
1- (1+x) e-x and 1/1+ e-x  as the activation functions in the 
hidden layer. 
     We can map software reliability prediction problem in 
terms of a neural network through: 
        P:{(Ik (t), Ok (t)) , ik+h (t + ∆)}           ok+h (t+∆)  (12) 
     where, (Ik (t), Ok (t)) represents the failure history of the 
software system at time t used for training the network and 
ok+h (t+∆) is the network’s prediction. Firstly, our task is to 
successfully train the network. After that the network is 
thoroughly used to predict the total number of faults to be 
detected at the end of future session k + h by feeding ik+h (t 
+ ∆) as its input. 

C. Prophecy Approach 

We have chosen the testing and debugging data from an 
actual project described by Yoshira Tohma say Data Set 
1(taken from [6] Table 4) for generating an accurate 
prediction. In the data set, execution time was reported in 
terms of days and faults in terms of cumulative faults at the 
end of each day. The total testing and debugging time was 
46 days and there were 266 faults. 

The process of training a neural network involves tuning 
the values of the weights and biases of the network to 
optimize network performance as defined by the network 
performance function.  
    Initially, we have trained our network with 100 epochs 
and 5 hidden neurons by updating the weights at each time 
we have encountered the wrong output. The calculated 
gradient error has been plotted as shown in fig 3, fig 4, fig 
5. 
 

 
Figure 3: Plot of errors w.r.t epochs of logistic growth curve model 

 

 
Figure 4: Plot of errors w.r.t epochs of GO NHPP model 

 

 
Figure 5: Plot of errors w.r.t epochs of Yamada S-shaped model 
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D. Comparison Criteria 

In order to compare the predictive accuracy of different 
models, we have used some quantitative measures. The 
software reliability research community uses a variety of 
metrics for comparison of models. Let the data be grouped 
into n points (ti ,fi ), i=1 to n, where fi is the cumulative 
number of faults found at time ti and ti is the accumulated 
execution time in disclosing fi faults. Feed the pairs of { ti ,fi 
} to train the network by the back-propagation algorithm. ti 

(where i>n) acts as a input to the network. Let µi be the 
projected number of faults at time ti  which will be the 
output of the network after the successful training. A two 
component predictability measure consisting of average 
error (AE) and average bias (AB) was used by Malaiya et 
al. to compare predictive accuracy of the models. 
 
    The comparison criteria we engage to compare various 
model’s performance are described as follows [7]. 
 
1. The Relative Error (RE) [7] 

RE= µi- fi   (13) 
                                          fi 

 
where fi is the actual faults and µi is the predicted faults 
at the end of testing. 
 

2. The Average Error (AE) 
3.  

  n-1 
AE= 1    ∑  |RE| (14) 

                                       n-1 i=1 
 

the AE measures how well a model predicts 
throughout the test phase. The average error is 
calculated for overall testing and debugging session. 
 

4. The Average Bias (AB) 
n-1 

AB= 1    ∑  RE (15) 
                                       n-1 i=1 
 
All the parameters mentioned above can be used to 
compare the predictive accuracy of models within a single 
data set only. 

V. PREDICTION RESULTS 

    At this point, we have trained our network through 
different activation functions. Moreover, fig 3, fig 4 and fig 
5 depict the flow of gradient error with the three models. 
After training the networks, the next step is to find the 
simulated results of the inputs by which we can calculate 
our first comparison parameter i.e. relative error. The figure 
6 represents the relative error with respect to the execution 
time for the three models respectively.  

 
Figure 6: Plot of relative errors w.r.t time of the three models 

 
Further, the average error and average bias of the models 

are as shown in Table 1:  
 

Table 1: Shows the values for three models 
Model Average Error Average Bias 

Logistic Growth 
Curve Model 

0.3190 0.2672 

Goel-Okumuto 
NHPP model 

1.5470 1.5444 

Yamada S-shaped 
model 

13.5657 13.2864 

VI. CONCLUSION 

While dealing with logistic growth curve model, Goel-
okumuto NHPP model and Yamada s-shaped model, we 
have seen that there is only minor variance among these 
models. As the lower values of average error and average 
bias can result in more reliable software. We conclude that 
Logistic growth curve model is the best approach that one 
can use for the software reliability prediction. Further we 
can say, logistic growth curve> Goel-okumuto NHPP 
model> Yamada s-shaped model. 
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